
Announcements Monoid Madness Property-based Testing FIN

Software System Design and Implementation

Lecture 3: Monoids, Property-based Testing

Zoltan A. Kocsis
University of New South Wales

Term 2 2022

1

Announcements Monoid Madness Property-based Testing FIN

Announcements

Exercise 01: Submission should now be working. Extension: a
generous one week June 23, 09:00 AM.
Exercise 02: Released tomorrow.
Assignment 01: Released on Monday, due July 3.

Quizzes: No individual extensions.

2

Announcements Monoid Madness Property-based Testing FIN

Revision: Monoids

A monoid consists of three things:

a type T,

a monoid operation • :: T → T → T,

an identity element e :: T

that obey the equations (laws)

1 (x • y) • z = x • (y • z) (associativity),
2 x • e = x = e • x

for all x , y :: T.

3

Announcements Monoid Madness Property-based Testing FIN

Revision: Declaring Monoids

To declare the monoid consisting of Int, addition and the identity
element 0:

instance Semigroup Int where

x <> y = x + y -- bullet (semigroup operation)

instance Monoid Int where

mappend = (<>) -- bullet (same as Semigroup op)

mempty = 0 -- identity

-- We have to check the laws ourselves!

Never declare Monoid Int!

4

Announcements Monoid Madness Property-based Testing FIN

Revision: Declaring Monoids

Never declare Monoid Int! Why?

Each type can have at most one Monoid instance.

But Int forms a monoid in multiple ways: (Z,+, 0), (Z,×, 1)

Instead: use a data/newtype for each instance.

data Sum = Sum Int deriving (Eq, Show)

instance Semigroup Int where

Sum x <> Sum y = Sum (x + y)

instance Monoid Sum where

mappend = (<>)

mempty = Sum 0

Demo: define Prod

5

Announcements Monoid Madness Property-based Testing FIN

Why care about monoids?

Monoids: a simple type class.

Type classes are somewhat like interfaces.

Most important: the laws they satisfy.

The laws allows us to write algorithms that work correctly with
every monoid.

6

Announcements Monoid Madness Property-based Testing FIN

Monoid Algorithms

Advantages of generic algorithms that work with every monoid:

Write once: need to write only one implementation.

Test/prove once: establish correctness using the laws.

Reuse: hundreds of monoids occur in real-world code.
But you have to learn to recognize them!

Two examples: Fast Monoid Exponentiation; MapReduce.

7

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation I

We can define repeated application of the monoid operation.

x2 = x • x

x3 = x • x • x

x5 = x • x • x • x • x

This looks sort-of like usual exponentiation. NB it is well-defined
only because • is associative.

8

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation II

We can define it recursively: x0 = e, xn+1 = x • xn
Or in Haskell:

expo :: (Monoid g) => g -> Int -> g

expo x 0 = mempty

expo x n = x <> expo x (n-1)

where (<>) = mappend

Notice: works for every monoid, once and for all

9

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation III
Can we do better? Think about how we evaluate

28 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2.

We could do it naively/iteratively:

2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
2 · 2 · 2 · 2 · 2 · 2 · 4

2 · 2 · 2 · 2 · 2 · 8
2 · 2 · 2 · 2 · 16

2 · 2 · 2 · 32
2 · 2 · 64
2 · 128

256

Took 7 steps (i.e. 7 unique multiplications).
10

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation IV

But we could do better! Notice that

28 = (2 · 2 · 2 · 2)(2 · 2 · 2 · 2).

So we could do 2 · 2 · 2 · 2 only once:

(2 · 2 · 2 · 2) · (2 · 2 · 2 · 2)
(2 · 2 · 4) · (2 · 2 · 4)

(2 · 8) · (2 · 8)
(16) · (16)

256

Took 4 steps (i.e. 4 unique multiplications).

11

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation V

But we could do even better! Repeat the same trick:

28 = ((2 · 2) · (2 · 2)) · ((2 · 2) · (2 · 2)).

So we could do 2 · 2 · 2 · 2 only once:

((2 · 2) · (2 · 2)) · ((2 · 2) · (2 · 2))
(4 · 4) · (4 · 4)

(16) · (16)
256

Took 3 steps (i.e. 3 unique multiplications).

12

Announcements Monoid Madness Property-based Testing FIN

Fast Monoid Exponentiation VI

Everything we’ve done relies only on associativity.
Therefore: The same trick works correctly for every monoid! We
can define fast exponentiation:

fexpo :: (Monoid g) => g -> Int -> g

fexpo x 0 = mempty

fexpo x n

| even n = y <> y

| otherwise = x <> fexpo x (n - 1) where

y = fexpo x (n `div` 2)

It will work equivalently to expo for every monoid.
Demo: performance comparison

13

Announcements Monoid Madness Property-based Testing FIN

FME Applications

Applications:

Public-key cryptography (fast modular exp.)

Linear algebra - finance, science, ML, etc. (fast matrix exp.)

In the practical tomorrow.

Benefits:

Optimize it once,

Test it once (or prove it correct),

Reuse many times (just supply the monoid).

14

Announcements Monoid Madness Property-based Testing FIN

MapReduce I

MapReduce

An algorithm for efficient, parallel processing of very large data
sets.
Parallel: across multiple machines (on a network); across multiple cores (on a machine)

Introduced at Google in 2004 (first to face the issue: building
the search index).

Simple processing problems (GOOG: build index, calculate
PageRank).

Massive data (GOOG: entire Internet).

Lots of computers (GOOG: data centers).

How do we split the jobs up?

Requirements: efficient, correct, easy to (re)use.

15

Announcements Monoid Madness Property-based Testing FIN

MapReduce II

What emerged:

A generic algorithm (MapReduce)

A programming model (confusingly also called MapReduce)

In wide use today: Hadoop, Spark (in-memory MR), etc.

Powered by monoids!

What it does: allows computations to take advantage of a large
number of machines/cores/etc.

16

Announcements Monoid Madness Property-based Testing FIN

MapReduce III

 🐔🐻
 🐺🐱

 😺🐱
 🐺🐻

 🐔🐻

 🐺🐱

 😺🐱

 🐺🐻

 CPU1

 CPU2

 CPU3

 CPU4

Cat: 1
Wolf:1

Bear: 1
Chicken: 1

Cat: 2

Bear: 1
Wolf: 1

 +

 +

Bear: 1
Cat: 1

Chicken: 1
Wolf: 1

Bear: 1
Cat: 2
Wolf: 1

Bear: 2
Cat: 3

Chicken: 1
Wolf: 2

SPLIT MAP REDUCE REDUCE

 +

17

Announcements Monoid Madness Property-based Testing FIN

MapReduce IV

Observation

What makes the reduce phase work is that the reduction operation
(<>) :: Counts -> Counts -> Counts

forms a monoid!

18

Announcements Monoid Madness Property-based Testing FIN

MapReduce V
We have a bunch of results:

r1, r2, r3, r4, r5, r6, r7, r8

We need to combine them using •:

r1 • r2 • r3 • r4 • r5 • r6 • r7 • r8

Thanks to associativity, we can parenthesize them:

(r1 • r2) • (r3 • r4) • (r5 • r6) • (r7 • r8)

Run each block in parallel (on 4 different computers):

(r1 • r2) • (r3 • r4) • (r5 • r6) • (r7 • r8)

Repeat on the 4 intermediate results (w/ 2 computers)...

(R1 • R2) • (R3 • R4) ⇒ S1 • S2 ⇒ F

19

Announcements Monoid Madness Property-based Testing FIN

MapReduce VI
MapReduce fails if the reduce operation is not associative. Think
of the rock-paper-scissors operation • :: RPS → RPS → RPS which
returns the winner. A list of results [R,R,R,R,S,P] reduced on 3
computers would yield:

(R • R) • (R • R) • (S • P) =
R • R • S =

R • S =

R.

but if we have only 2 computers it would yield:

(R • R • R) • (R • S • P) =
R • P =

P.

NB Ad-hoc parenthesizing non-associative operations does not
make sense. MapReduce needs associativity!

20

Announcements Monoid Madness Property-based Testing FIN

MapReduce VII

Non-parallel sketch of MapReduce in Haskell:

mapReduce -- non-parallelized

:: (Monoid g) =>

(i -> [p]) -- splitter function

-> (p -> g) -- map function

-> i -- input to split

-> g -- final result

mapReduce split f input = mconcat . map f . split $ input

21

Announcements Monoid Madness Property-based Testing FIN

MapReduce VIII

Somewhat parallel version: also easy to write.

import Control.Parallel (par)

import Control.Parallel.Strategies (using, parMap, rpar)

mapReduce' :: (Monoid g) =>

(i -> [p]) -> (p -> g) -> i -> g

mapReduce' split f input = mapResult `par` reduceResult

where

mapResult = parMap rpar f (split input)

reduceResult = mconcat mapResult `using` rpar

This (and only this!) slide is not going to be examined: you don’t need to understand how parallelism works.

22

Announcements Monoid Madness Property-based Testing FIN

MapReduce IX

Keep in mind that this is about the MapReduce algorithm, as
opposed to the framework (programming model).

A real MapReduce framework implementation does a lot of
other stuff: shuffling data, dealing with machines that crash,
saving temporary results, etc.

You need to understand the algorithm as presented here. You
don’t need to learn a MapReduce framework.

23

Announcements Monoid Madness Property-based Testing FIN

Free Properties

Moral of the story so fafr: To correctly use generic algorithms
(like MapReduce) we need to make sure that certain properties
(associativity of •) actually hold.
Haskell already ensures many properties automatically with its
language design and type system.

1 Memory is accessed where and when it is safe and permitted
to be accessed (memory safety).

2 Values declared with a certain static type will actually have
that type at run time (type safety).

3 All functions are pure: Programs don’t have side effects,
equational reasoning works (purely functional programming).

24

Announcements Monoid Madness Property-based Testing FIN

Functional Properties

But Haskell can’t guarantee most functional properties: properties
not of a function implementation (performance, memory safety),
but purely of the input-output mapping.
We have already seen a few examples.

Example (Properties)

1 reverse is an involution: reverse (reverse xs) == xs

2 right identity for (++): xs ++ [] == xs

3 transitivity of (>): (a > b) ∧ (b > c) ⇒ (a > c)

The set of properties that capture all of our requirements for our
program is called the functional correctness specification of our
software.

This defines what it means for software to be correct.

25

Announcements Monoid Madness Property-based Testing FIN

Proofs

Last week we saw some proof methods for Haskell programs. We
could prove that our implementation preserves invariants
(map/length), meets its correctness specification, or generates the
same output as a simpler, slower implementation.

Such proofs certainly offer a high degree of assurance, but:

Proofs must make some assumptions about the environment
and the semantics of the software.

Proof complexity grows with implementation complexity,
sometimes drastically.

If software is incorrect, a proof attempt might simply become
stuck: we do not always get constructive negative feedback.

Proofs can be labour and time intensive ($$$), or require
highly specialised knowledge ($$$).

26

Announcements Monoid Madness Property-based Testing FIN

Testing

Compared to proofs:

Tests typically run the actual program, so requires fewer
assumptions about the language semantics or operating
environment.

Test complexity does not grow with implementation
complexity, so long as the specification is unchanged.

Incorrect software when tested leads to immediate,
debuggable counterexamples.

Testing is typically cheaper and faster than proving.

Tests care about efficiency and computability, unlike proofs.

We lose some assurance, but gain some convenience ($$$).

27

Announcements Monoid Madness Property-based Testing FIN

Property Based Testing

Key idea: Generate random input values, and test properties by
running them.

Example (QuickCheck Property)

prop_reverseApp xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Property: this should hold for all lists xs,ys.
Test: try many random lists xs,ys.

Haskell’s QuickCheck wass the first library invented for
property-based testing. The concept has since been ported to
Erlang, Scheme, Common Lisp, Perl, Python, Ruby, Java, Scala,
F#, OCaml, Standard ML, C and C++.

28

Announcements Monoid Madness Property-based Testing FIN

PBT vs. Unit Testing

Properties are more compact than unit tests, and describe
more cases.
⇒ Less testing code

Property-based testing heavily depends on test data
generation:

Random inputs may not be as informative as hand-crafted
inputs
⇒ use shrinking
Random inputs may not cover all necessary corner cases:
⇒ use a coverage checker
Random inputs must be generated for user-defined types:
⇒ QuickCheck includes functions to build custom generators

By increasing the number of random inputs, we improve code
coverage in PBT.

29

Announcements Monoid Madness Property-based Testing FIN

Test Data Generation

Data which can be generated randomly is represented by the
following type class:

class Arbitrary a where

arbitrary :: Gen a -- more on this later

shrink :: a -> [a]

Most of the types we have seen so far implement Arbitrary.

Shrinking

The shrink function is for when test cases fail. If a given input x
fails, QuickCheck will try all inputs in shrink x; repeating the
process until the smallest possible input is found.

30

Announcements Monoid Madness Property-based Testing FIN

Testable Types

The type of the quickCheck function is:

-- more on IO later

quickCheck :: (Testable a) => a -> IO ()

The Testable type class is the class of things that can be
converted into properties. This includes:

Bool values,

Any function from an Arbitrary input to a Testable

output:

instance (Arbitrary i, Testable o)

=> Testable (i -> o) ...

Thus the type [Int] -> [Int] -> Bool (as used earlier) is
Testable.

31

Announcements Monoid Madness Property-based Testing FIN

Demo: Simple example
Is this function reflexive?

divisible :: Integer -> Integer -> Bool

divisible x y = x `mod` y == 0

prop_refl :: Integer -> Bool

prop_refl x = divisible x x

Encode pre-conditions with the (==>) operator:

prop_refl :: Integer -> Bool

prop_refl x = x > 0 ==> divisible x x

(but may generate a lot of spurious cases)

or select different generators with modifier data types.

prop_refl :: Positive Integer -> Bool

prop_refl (Positive x) = divisible x x

(but may require you to define custom generators)

32

Announcements Monoid Madness Property-based Testing FIN

Arbitrary instances

Gen t is a data type that describes how to generate a random
element of type t.

When writing your own Arbitrary instances, you’ll need to work
with Gen, and you’ll need to know:

arbitrary :: Arbitrary t => Gen t

(<$>) :: (a -> b) -> Gen a -> Gen b

(<*>) :: Gen (a -> b) -> Gen a -> Gen b

pure :: a -> Gen a

oneof :: [Gen a] -> Gen a

Warning: :t will give more general types!

33

Announcements Monoid Madness Property-based Testing FIN

Arbitrary example

data Color = Color Int Int Int deriving (Show, Eq)

-- safe constructor

color :: Int -> Int -> Int -> Color

color x y z =

Color (x `mod` 255) (y `mod` 255) (z `mod` 255)

instance Arbitrary Color where

arbitrary =

color <$> arbitrary <*> arbitrary <*> arbitrary

Demo: RPS, Color arbitrary instance

34

Announcements Monoid Madness Property-based Testing FIN

FIN

1 Don’t forget to submit Quiz 2.

2 Exercise 1: submission instructions will be posted today, you
have a week-long extension.

3 Exercise 2 and Quiz 3 will be released tomorrow.

35

	Announcements
	

	Monoid Madness
	

	Property-based Testing
	

	FIN

